

## Test Report (2<sup>nd</sup> Ed.)

### **Determination of the photocatalytic air-cleaning performance of coated polycarbonate samples according to EN 16980-1 with modified tests conditions**

Quotation-No.: Ne20230119-01

Contractor:

**NANOAIR SOLUTIONS S.L.U.**  
Dr. Joaquín Piserra, CEO  
C/ Frederic Mompou, 3 4<sup>o</sup> A-1  
08960 Sant Just Desvern/Barcelona  
SPAIN

Tel.: +34 933 486 476  
[jpiserra@pureti.es](mailto:jpiserra@pureti.es)

For their customer:  
**Dott.Gallina s.r.l.**

Contract execution:

**Fraunhofer Institute for Surface Engineering and Thin Films IST**  
Mr. Frank Neumann  
Team Leader Photo- and Electrochemical Environmental Technologies  
Bienroder Weg 54 E, D-38108 Braunschweig  
GERMANY

Tel.: +49 531 2155 658  
[frank.neumann@ist.fraunhofer.de](mailto:frank.neumann@ist.fraunhofer.de)

## 1 Principle and intention of the work

The aim of the project was to determine the photocatalytic air-cleaning performance of coated polycarbonate samples treated with Pureti Coat by a non-electrostatic spray system. The test has been performed following the setup of EN 16980-1 with modified test conditions. Tests with modified test conditions are mostly used in the development or pre-series production of products to document the progress of a development or to secure findings from it. Tests according to this pattern do not replace tests according to standard conditions and are therefore primarily intended for internal use.

The European standard EN 16980-1 describes a method for assessing the performance of photocatalytic inorganic materials as thin films or coatings on a variety of substrates for the photocatalytic abatement of nitric oxide in the gas phase. In contrast to ISO 22197-1, a continuously stirred tank reactor (CSTR) is used and a fan ensuring perfect mixing inside the reaction chamber. The photocatalytic abatement rate is calculated from the observed rate by eliminating the effects of mass transfer and thus makes it possible to distinguish the photocatalytic activities of various products with an absolute scale. However, the method is not suitable for pigments.

The performance of the photocatalytic specimen under test is evaluated by measuring the degradation rate of nitric oxide (NO) using the method specified above. For the measurements and calculations described in this standard the concentration of nitrogen oxides (NO<sub>x</sub>) is defined as the stoichiometric sum of nitric oxide (NO) and nitrogen dioxide (NO<sub>2</sub>).

In accordance with EN 16980-1 the resulting intrinsic photocatalytic abatement rate of NO  $k_R = \frac{v_{NO}^{photo}}{c_{NO}^{IN}}$  is calculated by dividing the NO abatement rate  $v_{NO,i}^{photo}$  at nominal fan flow of 70 m<sup>3</sup>/h (i=0) by the concentration of NO  $c_{NO}^{IN}$  at reactor inlet.

In order to comply with the requirements of the customer the test was performed at nominal fan speed, while UV irradiation was realized by a 352 nm fluorescent lamp @1,5 mW/cm<sup>2</sup>. NO feed concentration was lowered to 100 ppb and NO flux rate was adjusted to 1,0 l/min. The sample was pre-activated for 24 hours according to ISO 22197-1:2016 clause 8.1.2. Subsequently, a 2 hours washing step in deionized water and 24 hours drying in an oven at 40 °C was performed. Optional determination of mass transfer with varying fan speed according to optional clause 10 of the standard was not part of this work.

## 2 Overview of samples tested

On behalf of Dott.Gallina s.r.l., Italy, the samples were delivered by Nanoair Solutions S.L.U., Spain, and shipped to Fraunhofer IST in September 2023. The samples were fabricated in form of honeycomb structure like polycarbonate samples in size of 8 x 8 cm<sup>2</sup>. According to the customer, the samples were coated Pureti Coat 4.0 by an electrostatic spray process and were pre-cured under UV-A light for more than 48 hours.

| Sample No. | Sample name      |
|------------|------------------|
| 1          | Polycarbonate G1 |

The tests were performed in September 2023. All samples were consumed.

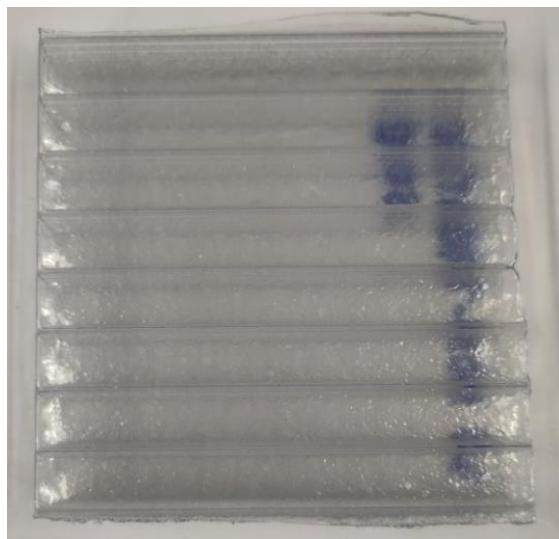
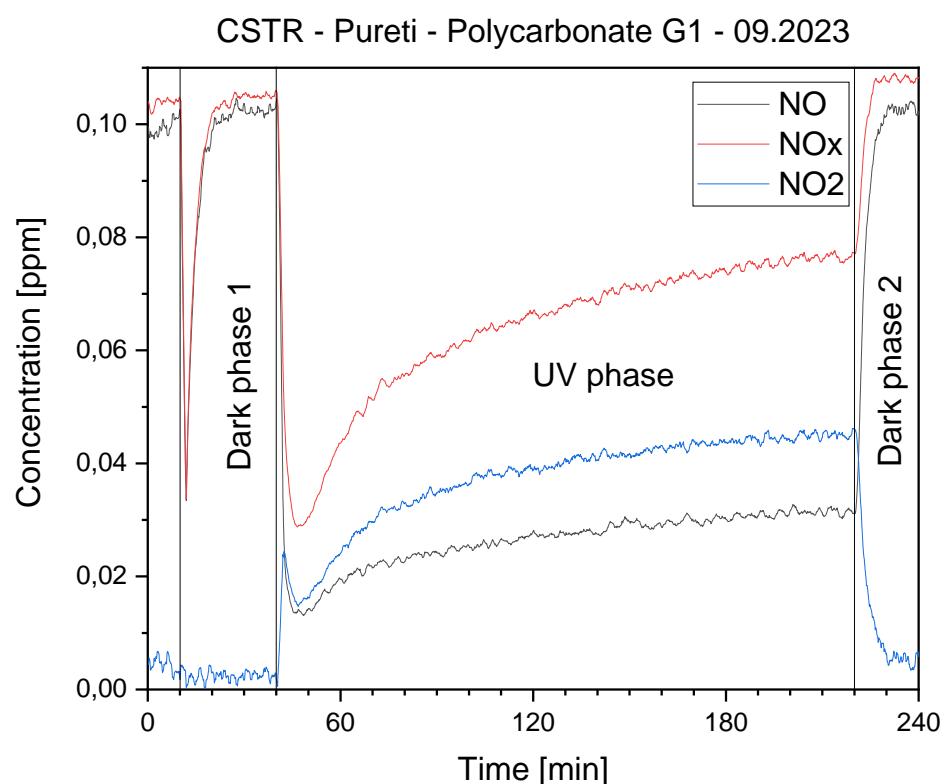

### 3 Removal of nitric oxide in a continuously stirred tank reactor (CSTR)

Table of test conditions:

|                                |                                                                                                                                                                                                                     |  |  |  |
|--------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Test method                    | Removal of nitric oxide in a continuously stirred tank reactor (CSTR) following the setup of EN 16980-1 with modified test conditions                                                                               |  |  |  |
| Executing laboratory           | Fraunhofer Institute for Surface Engineering and Thin Films IST                                                                                                                                                     |  |  |  |
| Test period                    | 27 September, 2023                                                                                                                                                                                                  |  |  |  |
| Examiner                       | Hendrik Thiem                                                                                                                                                                                                       |  |  |  |
| Test gases                     | Nitric oxide (NO), 50 ppmv in N <sub>2</sub> , Linde AG<br>Synthetic air (SA), free of hydrocarbons                                                                                                                 |  |  |  |
| UV-Lamp (pre-conditioning)     | Philips Actinic BL TL-K 40W; peak @ 365±10 nm                                                                                                                                                                       |  |  |  |
| Pre-conditioning of samples    | 365 nm UV; 25,5 h; 1,67 mW/cm <sup>2</sup> ; according to ISO 22197-1:2016 clause 8.1.2;<br>followed by a subsequent washing step in deionized water (2 h) and drying in an oven at 40 °C for a period of 22 hours. |  |  |  |
| UV-Detector type               | Ophir 3A-P-FS-Thermopile (Nova II), Ophir Spiricon Europe GmbH                                                                                                                                                      |  |  |  |
| Measurement conditions         |                                                                                                                                                                                                                     |  |  |  |
| Reactor type                   | Continuously stirred tank reactor (CSTR)                                                                                                                                                                            |  |  |  |
| Reactor net volume             | 3,2 l                                                                                                                                                                                                               |  |  |  |
| Nominal fan speed              | 70 m <sup>3</sup> /h                                                                                                                                                                                                |  |  |  |
| Sample No.                     | 1                                                                                                                                                                                                                   |  |  |  |
| Temperature in reactor         | 26,7±0,3 °C                                                                                                                                                                                                         |  |  |  |
| Relative humidity in reactor   | 41,2±0,8 %                                                                                                                                                                                                          |  |  |  |
| Test gas feed                  | 100 ppbv nitric oxide in technical air; 1,0 l/min                                                                                                                                                                   |  |  |  |
| UV-Lamp (measurement)          | UV-A bench lamp; 15 W, 352 nm, 230 VAC/50 Hz                                                                                                                                                                        |  |  |  |
| UV irradiance (sample surface) | 1,49 mW/cm <sup>2</sup> @ 352 nm                                                                                                                                                                                    |  |  |  |
| UV-Detector type               | Ophir 3A-P-FS-Thermopile (Nova II), Ophir Spiricon Europe GmbH                                                                                                                                                      |  |  |  |
| NO-Analyzer                    | AC32M Chemilumineszenz-Detektor, Environnement S.A.                                                                                                                                                                 |  |  |  |
| Variations from standard       | Test gas feed and concentration lowered at the same time (1,0 l/min, 100 ppb); UV intensity increased to 1,5 mW/cm <sup>2</sup> ; omission of optional determination of mass transfer with varying fan speed;       |  |  |  |


## 4 Specific test results

Exemplary image of the test specimen:



Sample No 1: Polycarbonate G1, effective irradiated area  $8 \times 8 \text{ cm}^2$ ;

Specific test results:



The NO abatement rate  $r_{NO,i}^{photo}$  at nominal fan speed (i = 0) and the NO<sub>2</sub> photocatalytic production rate  $r_{NO_2,i}^{photo}$  are expressed as mass (micrograms) of NO consumed or mass of NO<sub>2</sub> produced by the sample per unit of time and unit of exposed surface area. These rates are calculated as the difference between the abatement/production rates and the rates observed in the dark according to:

$$r_{NO,i}^{photo} = \frac{613F}{S} \left( \frac{\eta_{NO,i}^{total}}{(1-\eta_{NO,i}^{total})} - \frac{\eta_{NO}^{dark}}{(1-\eta_{NO}^{dark})} \right) \quad \text{NO abatement rate in } \mu\text{g}/(\text{m}^2 \cdot \text{h});$$

$$r_{NO_2,i}^{photo} = \frac{940F}{S} \left( \frac{\eta_{NO_2,i}^{total}}{(1-\eta_{NO,i}^{total})} - \frac{\eta_{NO_2}^{dark}}{(1-\eta_{NO}^{dark})} \right) \quad \text{NO}_2 \text{ production rate in } \mu\text{g}/(\text{m}^2 \cdot \text{h});$$

$$r_{NO_x,i}^{photo} = 1,53 \ r_{NO,i}^{photo} - r_{NO_2,i}^{photo} \quad \text{NO}_x \text{ abatement rate in } \mu\text{g}/(\text{m}^2 \cdot \text{h})$$

with:

$F$  actual flow of reactant gas entering the reactor expressed in  $\text{m}^3 \cdot \text{h}^{-1}$

$S$  sample irradiated surface area in  $\text{m}^2$

$\eta_{NO,i}^{total}$  overall conversion of NO (NO<sub>2</sub>) measured at nominal fan speed (70  $\text{m}^3/\text{h}$ )

$\eta_{NO}^{dark}$  conversion of NO (NO<sub>2</sub>) in the dark

(\*) According to the lowered gas concentration and flow rate the factors for modified test conditions of  $r_{NO,i}^{photo}$  and  $r_{NO_2,i}^{photo}$  were adapted to 122F and 188F, respectively.

The resulting intrinsic NO photocatalytic abatement rate  $k_R = r_{NO}^{photo}/c_{NO}^{IN}$  is calculated by dividing the NO abatement rate  $r_{NO,i}^{photo}$  with i = 0 by the concentration of NO at reactor inlet. The intrinsic NO photocatalytic abatement rate can also be expressed as photocatalytic deposition velocity.

Table of test results:

| Sample No. | NO inlet concentration [ppmv]<br>$c_{NO}^{IN}$ | NO abatement rate [ $\mu\text{g}/(\text{m}^2 \cdot \text{h})$ ]<br>$r_{NO,i}^{photo}$ | NO <sub>2</sub> production rate [ $\mu\text{g}/(\text{m}^2 \cdot \text{h})$ ]<br>$r_{NO_2,i}^{photo}$ | NO <sub>x</sub> abatement rate [ $\mu\text{g}/(\text{m}^2 \cdot \text{h})$ ]<br>$r_{NO_x,i}^{photo}$ | Overall conversion of NO [%]<br>$\eta_{NO,i}^{total}$ | NO photocatalytic abatement rate [m/h]<br>$k_R = \frac{r_{NO}^{photo}}{c_{NO}^{IN}}$ |
|------------|------------------------------------------------|---------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-------------------------------------------------------|--------------------------------------------------------------------------------------|
| 1          | 0,099                                          | 2488,12                                                                               | 2262,49                                                                                               | 1544,34                                                                                              | 68,51                                                 | 19,83                                                                                |

According to the test results above the tested sample **“Polycarbonate G1”** exhibits an intrinsic NO photocatalytic abatement rate of

$$k_R = 19,83 \text{ m/h.}$$

All test results in this report relate exclusively to the samples tested in this report.

## 5 Final remarks

The client shall be granted a non-exclusive, royalty-free right of use for the purpose of application on which the contract is based to copyright protected works, databases, and know-how created during the performance of the project. The granting of an exclusive right of use for the purpose of application on which the contract is based shall require a separate agreement.

This test report consists of 6 pages and may only be distributed or reproduced in its full entirety. However, partial reproduction or publication is only allowed by written permission of the Fraunhofer Institute for Surface Engineering and Thin Films IST.

Please address your inquiries in this regard to:

Dr. Simone Kondruweit

Head of Marketing and Communications  
Fraunhofer-Institut für Schicht und Oberflächentechnik IST  
Bienroder Weg 54 E, 38108 Braunschweig  
Telephone +49(0)531 2155-535  
simone.kondruweit@ist.fraunhofer.de

Braunschweig, November 2023